The MSc Bioinformatics and Biostatistics unlocks diverse career avenues in biology, healthcare, and data science. Graduates can thrive in biomedical research, clinical trials, healthcare data analysis, genomics, personalized medicine, pharmaceuticals, data analytics, and beyond. Equipped with versatile skills, our graduates are in high demand across industries where data analysis and biological expertise are paramount.
Modalidad
ONLINE
Precio
Consultar
Requisitos
Por qué escoger este programa ?
This MSc/ PGDip Bioinformatics and Biostatistics prepares you to apply and develop new computational techniques in biomedical research, working both in hospital environments and for companies across the biotech sector.
Our online MSc / PGDip Biostatistics and Bioinformatics will teach you how to use computer tools to store, organise, analyse and interpret vast amounts of data to extract knowledge that can be applied to solving biological and biomedical problems. This course will fully equip you with the skills you need to kickstart your career in this rapidly evolving sector.
What is bioinformatics?
Bioinformatics is the application of computational and statistical techniques to study biological data, including DNA, RNA and protein sequences. It involves the development of algorithms and software tools to analyse and interpret large data sets in order to understand biological systems and processes. Bioinformatics has applications in several fields, including genomics, proteomics, drug discovery and personalised medicine.
What are the uses of biostatistics?
Biostatistics is the application of statistical methods to study biological data and improve public health. It has many applications, including the design of clinical trials, the analysis of health care data, the identification of risk factors for disease, and the evaluation of public health programmes. Biostatistics also plays a crucial role in developing and testing new medical treatments, and in the analysis and interpretation of epidemiological data to inform public health policy. THE ROUTE TO YOUR FUTURE
Why enrol in our MSc / PGDip Bioinformatics and Biostatistics online training programme? Because in addition to having prestigious professors and a curriculum aimed at preventing student drop-out, we guide our students towards achieving their professional goals. Learn more about the employability plan you'll benefit from the moment you sign up.
Characteristics of the MSc Medical Laboratory Science
Audio visual study material - You will have access to many hours of audio visual materials, which are essential teaching materials. Thus, you can study wherever and whenever you want.
Practical activities - Approximately twice a week you will carry out practical activities that will be reviewed and evaluated by your specialized teachers.
Complementary material - Class summaries, articles to stay up-to-date... You will have everything you need to keep on learning.
Master class - You will learn from well-known experts in the medical sector thanks to our master classes, which you can watch as many times as you want.
MSc / PGDip final project - At the end of the course you will conduct a research project on a topic of your interest. One of our teachers will supervise your project.
The MSc Bioinformatics and Biostatistics unlocks diverse career avenues in biology, healthcare, and data science. Graduates can thrive in biomedical research, clinical trials, healthcare data analysis, genomics, personalized medicine, pharmaceuticals, data analytics, and beyond. Equipped with versatile skills, our graduates are in high demand across industries where data analysis and biological expertise are paramount.
TEMARIO
As your journey progresses, you will discover different modules which will help you, step by step, to reach your final goal.
Module 1. Biochemistry and Molecular Biology I
1. The cell: structure. 2. Cell components and carbohydrates 3. Lipids 4. Peptides 5. DNA 6. ARN 7. Chromosomes 8. Genes and genomes 9. Study of the chromosomes 10. Mutations and polymorphisms 11. Cell division 12. Central dogma of molecular biology 13. DNA replication and repair 14. Transcription 15. Translation
Module 2. Biochemistry and Molecular Biology II
16. Control of gene expression in prokaryotes 17. Control of gene expression in eukaryotes I 18. Control of gene expression in eukaryotes II 19. Epigenetics 20. PCR 21. Recombinant DNA technology 22. Sequencing 23. Nucleic acid hybridisation: arrays 24. Cell mobility and transport 25. Membrane proteins 26. Mass spectrometry 27. X-ray crystallography 28. Protein structure prediction 29. Basic immunology 30. Viruses: structure and function
Module 3. Biostatistics and R I
1. Fundamentals of descriptive analysis of one-dimensional data 2. Introduction to R and RSTUDIO 3. Fundamentals of Probability Calculus I 4. Fundamentals of Probability Calculus II 5. Discrete random variables 6. Continuous random variables 7. Discrete notable distributions 8. Practice of R. Main objects of R 9. Continuous notable distributions 10. Basic elements of a random vector 11. R practice. Representation and simulation of random variables with R 12. Media vector and covariance matrix 13. Estimation of the parameters of a population 14. Confidence range for a proportion 15. Confidence range in normal distributions
Module 4. Biostatistics and R II
16. Hypothesis contrast for a proportion 17. Practice of R. Bias, variance and confidence range for an estimator 18. Hypothesis contrast for a normal population 19. Comparison of populations 20. Practical R. Hypothesis contrast in R 21. The maximum plausibility method 22. The method of linear regression simple I 23. The method of linear regression simple II 24. The model of multiple linear regression 25. Practical R. Linear regression adjustments 26. The model of analysis of variance 27. The method of analysis of covariance 28. Logistic regression 29. Neural networks for regression 30. Variable selection and extraction techniques for regression 31. Variable selection and extraction methods 32. Evaluation of regression models 33. Comparison of regression models
Module 5. Bioinformatics
Part I. Python 1. Python, the new unknown 2. Basic data types, operators and input/output 3. Types of advanced data.4. Flow control 5. Function 6. Errors and Object-Oriented Programming 7. Data manipulation
Part II. Omics database and data analysis 1. Introduction to bioinformatics I: Operating System Requirements 2. Introduction to bioinformatics II: How to use the terminal 3. Introduction to omics: application
4. What is massive sequencing? From DNA to NGS data (Big Data) 5. General bioinformatics analysis of mass sequencing data 6. DNA sequencing 7. Integrative Genome Viewer 8. Variant detection through the use of bioinformatics tools 9. Transcriptomics I: RNA-seq 10. Transcriptomics II: Microarrays 11. Characterisation and functional enrichment 12. Other omics 13. Databases: Repositories, data analysis and interpretation of results 14. Bioconductor: repository of bioinformatics tools 15. Practical I: Data analysis using Galaxy 16. Practical II: Designing a pipeline for variant calling 17. Practical III: Designing a transcriptomics pipeline 18. The future of bioinformatics
Major Project
MASTERS RELACIONADOS
Échale un vistazo a los siguientes Másters relacionados
La industria de la belleza y la cosmética es una de las más dinámicas y prometedoras en el mundo actual. La creciente demanda de productos y tecnologías innovadoras ha impulsado la necesidad de profesionales altamente capacitados en la Ciencia Cosmética y Tecnología. Un Máster en esta discipl...
Aunque los análisis sanitarios se han asimilado de forma global al ámbito de los análisis clínicos, su concepto abarca otros campos, no asistenciales, pero relacionados de forma indirecta con la salud de los ciudadanos. De esta manera y de forma global, su desarrollo incumbe no solo a los profes...
La detección temprana de la patología renal es crucial, ya que la enfermedad implica muchas restricciones en la dieta de los afectados, además de otras medidas, y repercute de manera notable en su calidad de vida, sobre todo, cuando deben someterse a diálisis, en espera de un trasplante renal, p...
La gestión eficaz de proyectos es fundamental en el mundo empresarial actual, donde la complejidad y la competencia exigen la habilidad de llevar a cabo iniciativas exitosas. El Máster en Dirección de Proyectos es un programa de posgrado diseñado para preparar a profesionales para liderar y gest...
IMF Smart Educatión, dentro de su escuela de Biotech & Pharma, pone en marcha el Máster en Gestión Integral y Monitorización de Ensayos Clínicos. El principal objetivo de este programa es aportar el pensamiento crítico y las habilidades de resolución de problemas que los empleadores buscan en...
Este Máster en Análisis Clínicos te prepara para trabajar en un ámbito apasionante como es el de los laboratorios clínicos. Y es que este tipo de laboratorios tienen cada vez más peso en la investigación, la prevención, el diagnóstico y el tratamiento de enfermedades. En este máster onlin...